Telegram Group & Telegram Channel
⭐️ Awesome-LLM-Synthetic-Data - курируемый список ресурсов, инструментов и исследований, связанных с использованием синтетических данных для больших языковых моделей (LLM).

Чем полезен:
- Централизованная база знаний:
Вместо того чтобы самостоятельно искать статьи, библиотеки и исследования по синтетическим данным, здесь собрана готовая, структурированная подборка материалов.

- Актуальные инструменты и методы:
Репозиторий включает ссылки на инструменты для генерации синтетических данных, методы оценки их качества и примеры интеграции в пайплайны обучения LLM. Для практикующего специалиста это может стать источником идей для оптимизации процессов обучения и экспериментов с новыми методами.

- Поддержка исследований и разработки:
Если ваша работа связана с решением проблем, где реальных данных не хватает или данные зашумлены, использование синтетически данных может значительно улучшить результаты. Этот репозиторий поможет изучить современные подходы к генерации и использованию синтетических данных, что особенно актуально при разработке и тестировании новых моделей.

Github

@machinelearning_interview



tg-me.com/machinelearning_interview/1552
Create:
Last Update:

⭐️ Awesome-LLM-Synthetic-Data - курируемый список ресурсов, инструментов и исследований, связанных с использованием синтетических данных для больших языковых моделей (LLM).

Чем полезен:
- Централизованная база знаний:
Вместо того чтобы самостоятельно искать статьи, библиотеки и исследования по синтетическим данным, здесь собрана готовая, структурированная подборка материалов.

- Актуальные инструменты и методы:
Репозиторий включает ссылки на инструменты для генерации синтетических данных, методы оценки их качества и примеры интеграции в пайплайны обучения LLM. Для практикующего специалиста это может стать источником идей для оптимизации процессов обучения и экспериментов с новыми методами.

- Поддержка исследований и разработки:
Если ваша работа связана с решением проблем, где реальных данных не хватает или данные зашумлены, использование синтетически данных может значительно улучшить результаты. Этот репозиторий поможет изучить современные подходы к генерации и использованию синтетических данных, что особенно актуально при разработке и тестировании новых моделей.

Github

@machinelearning_interview

BY Machine learning Interview








Share with your friend now:
tg-me.com/machinelearning_interview/1552

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

Machine learning Interview from hk


Telegram Machine learning Interview
FROM USA